{ "id": "0812.4994", "version": "v1", "published": "2008-12-30T00:44:23.000Z", "updated": "2008-12-30T00:44:23.000Z", "title": "Functional Equations of $L$-Functions for Symmetric Products of the Kloosterman Sheaf", "authors": [ "Lei Fu", "Daqing Wan" ], "comment": "23 pages", "categories": [ "math.NT", "math.AG" ], "abstract": "We determine the (arithmetic) local monodromy at 0 and at $\\infty$ of the Kloosterman sheaf using local Fourier transformations and Laumon's stationary phase principle. We then calculate $\\epsilon$-factors for symmetric products of the Kloosterman sheaf. Using Laumon's product formula, we get functional equations of $L$-functions for these symmetric products, and prove a conjecture of Evans on signs of constants of functional equations.", "revisions": [ { "version": "v1", "updated": "2008-12-30T00:44:23.000Z" } ], "analyses": { "subjects": [ "11L05", "14G15" ], "keywords": [ "functional equations", "symmetric products", "kloosterman sheaf", "laumons stationary phase principle", "laumons product formula" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0812.4994F" } } }