{ "id": "0812.1303", "version": "v1", "published": "2008-12-06T18:33:55.000Z", "updated": "2008-12-06T18:33:55.000Z", "title": "On the Taylor Coefficients of the Hurwitz Zeta Function", "authors": [ "Khristo Boyadzhiev" ], "comment": "9 pages. To appear in the JP Journal of Algebra, Number Theory and Applications", "categories": [ "math.NT", "math.CA" ], "abstract": "We find a representation for the Maclaurin coefficients of the Hurwitz zeta-function in terms of semi-convergent series involving the Bernoulli polynomials and the Stirling numbers of the first kind. In particular, this gives a representation for the coefficients of the Riemann zeta function. Our main instrument is a certain series transformation formula. A similar result is proved also for the Maclaurin coefficients of the Lerch zeta function.", "revisions": [ { "version": "v1", "updated": "2008-12-06T18:33:55.000Z" } ], "analyses": { "subjects": [ "11M35", "33A70" ], "keywords": [ "hurwitz zeta function", "taylor coefficients", "maclaurin coefficients", "riemann zeta function", "lerch zeta function" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0812.1303B" } } }