{ "id": "0811.4336", "version": "v6", "published": "2008-11-26T15:11:46.000Z", "updated": "2013-10-05T00:51:11.000Z", "title": "Invariants of stationary AF-algebras and torsion subgroup of elliptic curves with complex multiplication", "authors": [ "Igor Nikolaev" ], "comment": "12 pages, to appear Missouri J. Math. Sci", "journal": "Missouri J. Math. Sci. 26 (2014), 23-32", "categories": [ "math.NT", "math.OA" ], "abstract": "Let G(A) be an AF-algebra given by periodic Bratteli diagram with the incidence matrix A in GL(n, Z). For a given polynomial p(x) in Z[x] we assign to G(A) a finite abelian group Z^n/p(A) Z^n. It is shown that if p(0)=1 or p(0)=-1 and Z[x]/(p(x)) is a principal ideal domain, then Z^n/p(A) Z^n is an invariant of the strong stable isomorphism class of G(A). For n=2 and p(x)=x-1 we conjecture a formula linking values of the invariant and torsion subgroup of elliptic curves with complex multiplication.", "revisions": [ { "version": "v6", "updated": "2013-10-05T00:51:11.000Z" } ], "analyses": { "subjects": [ "11G15", "46L85" ], "keywords": [ "complex multiplication", "elliptic curves", "torsion subgroup", "stationary af-algebras", "strong stable isomorphism class" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0811.4336N" } } }