{ "id": "0809.2166", "version": "v3", "published": "2008-09-12T09:29:18.000Z", "updated": "2011-05-30T06:56:12.000Z", "title": "On the descending central sequence of absolute Galois groups", "authors": [ "Ido Efrat", "Jan Minac" ], "comment": "We implemented the referee's comments. The paper will appear in The American Journal of Mathematics", "categories": [ "math.NT", "math.KT" ], "abstract": "Let $p$ be an odd prime number and $F$ a field containing a primitive $p$th root of unity. We prove a new restriction on the group-theoretic structure of the absolute Galois group $G_F$ of $F$. Namely, the third subgroup $G_F^{(3)}$ in the descending $p$-central sequence of $G_F$ is the intersection of all open normal subgroups $N$ such that $G_F/N$ is 1, $\\mathbb{Z}/p^2$, or the modular group $M_{p^3}$ of order $p^3$.", "revisions": [ { "version": "v3", "updated": "2011-05-30T06:56:12.000Z" } ], "analyses": { "subjects": [ "12F10", "12G05", "12E30" ], "keywords": [ "absolute galois group", "descending central sequence", "odd prime number", "open normal subgroups", "modular group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0809.2166E" } } }