{ "id": "0804.1396", "version": "v1", "published": "2008-04-09T02:20:20.000Z", "updated": "2008-04-09T02:20:20.000Z", "title": "Presentations of finite simple groups: a computational approach", "authors": [ "R. M. Guralnick", "W. M. Kantor", "M. Kassabov", "A. Lubotzky" ], "comment": "48 pages", "categories": [ "math.GR", "math.CO" ], "abstract": "All nonabelian finite simple groups of rank $n$ over a field of size $q$, with the possible exception of the Ree groups $^2G_2(3^{2e+1})$, have presentations with at most $80 $ relations and bit-length $O(\\log n +\\log q)$. Moreover, $A_n$ and $S_n$ have presentations with 3 generators$,$ 7 relations and bit-length $O(\\log n)$, while $\\SL(n,q)$ has a presentation with 7 generators, $2 5$ relations and bit-length $O(\\log n +\\log q)$.", "revisions": [ { "version": "v1", "updated": "2008-04-09T02:20:20.000Z" } ], "analyses": { "subjects": [ "20D06", "20F05", "20J06" ], "keywords": [ "computational approach", "presentation", "nonabelian finite simple groups", "bit-length", "ree groups" ], "note": { "typesetting": "TeX", "pages": 48, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0804.1396G" } } }