{ "id": "0801.4798", "version": "v1", "published": "2008-01-30T23:31:11.000Z", "updated": "2008-01-30T23:31:11.000Z", "title": "Asymptotic behavior of global solutions of the $u_t=Δu + u^{p}$", "authors": [ "Oscar A. Barraza", "Laura B. Langoni" ], "comment": "15", "categories": [ "math.AP" ], "abstract": "We study the asymptotic behavior of nonnegative solutions of the semilinear parabolic problem {u_t=\\Delta u + u^{p}, x\\in\\mathbb{R}^{N}, t>0 u(0)=u_{0}, x\\in\\mathbb{R}^{N}, t=0. It is known that the nonnegative solution $u(t)$ of this problem blows up in finite time for $1
1+ 2/N$ and the norm of $u_{0}$ is small enough, the problem admits global solution. In this work, we use the entropy method to obtain the decay rate of the global solution $u(t)$.", "revisions": [ { "version": "v1", "updated": "2008-01-30T23:31:11.000Z" } ], "analyses": { "subjects": [ "35B40", "35B35", "35K65", "35K55" ], "keywords": [ "asymptotic behavior", "problem admits global solution", "nonnegative solution", "semilinear parabolic problem", "problem blows" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }