{ "id": "0712.3751", "version": "v2", "published": "2007-12-21T16:56:45.000Z", "updated": "2008-06-17T14:03:30.000Z", "title": "Constraint on rho-bar, eta-bar from B to K*pi", "authors": [ "Michael Gronau", "Dan Pirjol", "Amarjit Soni", "Jure Zupan" ], "comment": "5 pages, 4 figures. After publication of this paper in Phys. Rev. D 77, 057504 (2008) the results of Ref. [6] were corrected. We update our analysis in a separate addendum", "journal": "Phys.Rev.D77:057504,2008; Addendum-ibid.D78:017505,2008", "doi": "10.1103/PhysRevD.77.057504", "categories": [ "hep-ph" ], "abstract": "A linear CKM relation, $\\bar\\eta= \\tan\\Phi_{3/2}(\\bar\\rho-0.24\\pm 0.03)$, involving a $1\\sigma$ range for $\\Phi_{3/2}$, $20^\\circ < \\Phi_{3/2} < 115^\\circ$, is obtained from $B^0\\to K^*\\pi$ amplitudes measured recently in Dalitz plot analyses of $B^0\\to K^+\\pi^-\\pi^0$ and $B^0(t)\\to K_S\\pi^+\\pi^-$. This relation is consistent within the large error on $\\Phi_{3/2}$ with other CKM constraints which are unaffected by new $b\\to s\\bar q q$ operators. Sensitivity of the method to a new physics contribution in the $\\Delta S=\\Delta I=1$ amplitude is discussed.", "revisions": [ { "version": "v2", "updated": "2008-06-17T14:03:30.000Z" } ], "analyses": { "subjects": [ "11.30.Hv", "11.30.Er", "13.25.Hw", "14.40.Nd" ], "keywords": [ "linear ckm relation", "dalitz plot analyses", "ckm constraints", "large error", "physics contribution" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Physical Review D", "year": 2008, "month": "Mar", "volume": 77, "number": 5, "pages": "057504" }, "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "inspire": 771343, "adsabs": "2008PhRvD..77e7504G" } } }