{ "id": "0712.2812", "version": "v4", "published": "2007-12-17T20:48:30.000Z", "updated": "2008-10-11T15:59:19.000Z", "title": "Prescribing valuations of the order of a point in the reductions of abelian varieties and tori", "authors": [ "Antonella Perucca" ], "comment": "Final version. To appear on Journal of Number Theory", "doi": "10.1016/j.jnt.2008.07.004", "categories": [ "math.NT" ], "abstract": "Let G be the product of an abelian variety and a torus defined over a number field K. Let R be a K-rational point on G of infinite order. Call n_R the number of connected components of the smallest algebraic K-subgroup of G to which R belongs. We prove that n_R is the greatest positive integer which divides the order of (R mod p) for all but finitely many primes p of K. Furthermore, let m>0 be a multiple of n_R and let S be a finite set of rational primes. Then there exists a positive Dirichlet density of primes p of K such that for every l in S the l-adic valuation of the order of (R mod p) equals v_l(m).", "revisions": [ { "version": "v4", "updated": "2008-10-11T15:59:19.000Z" } ], "analyses": { "subjects": [ "14K15", "11G10", "14G25", "14L15", "11R45" ], "keywords": [ "abelian variety", "prescribing valuations", "reductions", "smallest algebraic k-subgroup", "infinite order" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0712.2812P" } } }