{ "id": "0711.3806", "version": "v4", "published": "2007-11-24T01:43:24.000Z", "updated": "2009-02-21T19:47:37.000Z", "title": "Geometric Intersection Number and analogues of the Curve Complex for free groups", "authors": [ "Ilya Kapovich", "Martin Lustig" ], "comment": "Revised version, to appear in Geometry & Topology", "journal": "Geometry and Topology, vol. 13 (2009), no. 3, pp. 1805-1833", "doi": "10.2140/gt.2009.13.1805", "categories": [ "math.GR", "math.GT" ], "abstract": "For the free group $F_{N}$ of finite rank $N \\geq 2$ we construct a canonical Bonahon-type continuous and $Out(F_N)$-invariant \\emph{geometric intersection form} \\[ <, >: \\bar{cv}(F_N)\\times Curr(F_N)\\to \\mathbb R_{\\ge 0}. \\] Here $\\bar{cv}(F_N)$ is the closure of unprojectivized Culler-Vogtmann's Outer space $cv(F_N)$ in the equivariant Gromov-Hausdorff convergence topology (or, equivalently, in the length function topology). It is known that $\\bar{cv}(F_N)$ consists of all \\emph{very small} minimal isometric actions of $F_N$ on $\\mathbb R$-trees. The projectivization of $\\bar{cv}(F_N)$ provides a free group analogue of Thurston's compactification of the Teichm\\\"uller space. As an application, using the \\emph{intersection graph} determined by the intersection form, we show that several natural analogues of the curve complex in the free group context have infinite diameter.", "revisions": [ { "version": "v4", "updated": "2009-02-21T19:47:37.000Z" } ], "analyses": { "keywords": [ "geometric intersection number", "curve complex", "intersection form", "equivariant gromov-hausdorff convergence topology", "unprojectivized culler-vogtmanns outer space" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0711.3806K" } } }