{ "id": "0711.2959", "version": "v2", "published": "2007-11-19T15:47:20.000Z", "updated": "2008-07-11T14:17:13.000Z", "title": "On conjugacy of unipotent elements in finite groups of Lie type", "authors": [ "Simon M. Goodwin", "Gerhard Roehrle" ], "comment": "9 pages, Minor changes and corrections", "categories": [ "math.GR", "math.RT" ], "abstract": "Let $\\bfG$ be a connected reductive algebraic group defined over $\\F_q$, where $q$ is a power of a prime $p$ that is good for $\\bfG$. Let $F$ be the Frobenius morphism associated with the $\\FF_q$-structure on $\\bfG$ and set $G = \\bfG^F$, the fixed point subgroup of $F$. Let $\\bfP$ be an $F$-stable parabolic subgroup of $\\bfG$ and let $\\bfU$ be the unipotent radical of $\\bfP$; set $P = \\bfP^F$ and $U = \\bfU^F$. Let $G_\\uni$ be the set of unipotent elements in $G$. In this note we show that the number of conjugacy classes of $U$ in $G_\\uni$ is given by a polynomial in $q$ with integer coefficients.", "revisions": [ { "version": "v2", "updated": "2008-07-11T14:17:13.000Z" } ], "analyses": { "subjects": [ "20G40", "20E45", "20D20" ], "keywords": [ "unipotent elements", "finite groups", "lie type", "reductive algebraic group", "fixed point subgroup" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0711.2959G" } } }