{ "id": "0707.1756", "version": "v5", "published": "2007-07-12T09:33:59.000Z", "updated": "2007-11-08T08:55:24.000Z", "title": "On the divisor function and the Riemann zeta-function in short intervals", "authors": [ "Aleksandar Ivic" ], "comment": "18 pages", "journal": "Ramanujan J. 19(2009), 207-224", "categories": [ "math.NT" ], "abstract": "We obtain, for $T^\\epsilon \\le U=U(T)\\le T^{1/2-\\epsilon}$, asymptotic formulas for $$ \\int_T^{2T}(E(t+U) - E(t))^2 dt,\\quad \\int_T^{2T}(\\Delta(t+U) - \\Delta(t))^2 dt, $$ where $\\Delta(x)$ is the error term in the classical divisor problem, and $E(T)$ is the error term in the mean square formula for $|\\zeta(1/2+it)|$. Upper bounds of the form $O_\\epsilon(T^{1+\\epsilon}U^2)$ for the above integrals with biquadrates instead of square are shown to hold for $T^{3/8} \\le U =U(T) \\ll T^{1/2}$. The connection between the moments of $E(t+U) - E(t)$ and $|\\zeta(1/2+it)|$ is also given. Generalizations to some other number-theoretic error terms are discussed.", "revisions": [ { "version": "v5", "updated": "2007-11-08T08:55:24.000Z" } ], "analyses": { "subjects": [ "11M06", "11N37" ], "keywords": [ "riemann zeta-function", "short intervals", "divisor function", "number-theoretic error terms", "mean square formula" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0707.1756I" } } }